A Diamond-Based Electrode for Detection of Neurochemicals in the Human Brain
نویسندگان
چکیده
Deep brain stimulation (DBS), a surgical technique to treat certain neurologic and psychiatric conditions, relies on pre-determined stimulation parameters in an open-loop configuration. The major advancement in DBS devices is a closed-loop system that uses neurophysiologic feedback to dynamically adjust stimulation frequency and amplitude. Stimulation-driven neurochemical release can be measured by fast-scan cyclic voltammetry (FSCV), but existing FSCV electrodes rely on carbon fiber, which degrades quickly during use and is therefore unsuitable for chronic neurochemical recording. To address this issue, we developed durable, synthetic boron-doped diamond-based electrodes capable of measuring neurochemical release in humans. Compared to carbon fiber electrodes, they were more than two orders-of-magnitude more physically-robust and demonstrated longevity in vitro without deterioration. Applied for the first time in humans, diamond electrode recordings from thalamic targets in patients (n = 4) undergoing DBS for tremor produced signals consistent with adenosine release at a sensitivity comparable to carbon fiber electrodes. (Clinical trials # NCT01705301).
منابع مشابه
Nanotechnology and Neuroscience Convergence: A Novel Tool for Neurotransmitters Monitoring
Since neurotransmitters significantly influence the brain activity, our understanding of the human brain will remain imperfect until all aspects relating to them become clear. One of the key challenges in neuroscience researches and therapies is elucidating the mechanisms by which the neurotransmitter release take place and is regulated in quantity and in time. Despite the enormous number of st...
متن کاملFabrication of an Electrochemical Immunosensor for Determination of Human Chorionic Gonadotropin Based on PtNPs/Cysteamine/AgNPs as an Efficient Interface
An ultrasensitive electrochemical immunosensor for the detection of tumor marker human chorionic gonadotropin (hCG) was developed with a limit of detection as low as 2 pg mL-1 in phosphate buffer. The Platinum nanoparticles (PtNPs) were electrodeposited to modify the gold surface and to increase enlarging the electrochemically active sites, resulting in the facilitation of electron exchange. Cy...
متن کاملVoltammetric Investigation of Thioridazine Using a Carbon Nanocomposite Electrode in Human Biological Samples
An electrochemical method employing a carbon nanocomposite electrode was developed to measure thioridazine. The electrode has been designed by incorporation of montmorillonite nanoclay into the carbon ionic liquid electrode. Surface morphology of the electrodes was done using scanning electron microscopy. Adsorptive stripping voltammetry was applied as a very sensitive analytical method for...
متن کاملElectrochemical Determination of Amitriptyline using a Nanocomposite Carbon Paste Electrode in Human Body Fluids
A carbon nanocomposite electrode has been designed by incorporation of montmorillonite nanoclayinto the carbon ionic liquid electrode for the electrochemical determination of amitriptiline . The surface ofthe proposed electrode was characterized by scanning electron microscopy. The presence of ionic liquid asa binder is believed to be responsible for the electrocatalytic activity of the propose...
متن کاملSimultaneous determination of dopamine and uric acid using a glassy carbon paste electrode modified with copper- para red complex
A simple approach based on cyclic voltammetry (CV) was developed for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) using a modified glassy carbon paste electrode (GCPE). In the present study, analytical parameters were optimized and electrochemical performance of modified electrode was investigated. The calibration curves were obtained ...
متن کامل